Abstract
Abstract When calculating uniform flows in open conduits and channels, Chezy’s resistance coefficient is not a problem data and its value is arbitrarily chosen. Such major disadvantage is met in all the geometric profiles of conduits and channels. Knowing the value of this coefficient is essential to both the design of the channel and normal depth calculation. The main objective of our research work is to focus upon the identification of the resistance coefficient relationship. On the basis of the rough model method (RMM) for the calculation of conduits and channels, a general explicit relation of the resistance coefficient in turbulent flow is established with different geometric profiles, particularly the egg-shaped conduit. Chezy’s resistance coefficient depends strongly on the filling rate, the discharge, the longitudinal slope, the absolute roughness of the internal walls of the conduit and the kinematic viscosity of the liquid. Moreover, in this work, a simplified method is presented to determine Chezy’s resistance coefficient with a limited number of data, namely the discharge, the slope of the conduit, the absolute roughness and the kinematic viscosity. Last but not least, after studying the variation of Chezy’s resistance coefficient as a function of the filling rate, an equally explicit expression is given for the easy calculation of this coefficient when its maximum value is reached. Examples of calculation are suggested in order to show how the Chezy’s coefficient can be calculated in the egg-shaped conduit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.