Abstract
Soil aggregates are basic structural units in soil organic carbon (SOC) protection. In alpine ecosystems, the seasonal freeze–thaw (FT) process characterizes soil formation and nutrient cycling. However, previous studies were mostly based on simulated FT experiments, which amplified the effects of natural FT processes. And, the regulations of pore structure on SOC protection/loss of aggregates during the FT processes were still not well understood. To investigate the effect of the seasonal FT process on SOC and pore structure of aggregates, as well as the interactions among them, soil samples were selected during a whole seasonal FT cycle, which can be divided into four periods: unstable freezing (UFP), stable frozen (SFP), unstable thawing (UTP), and stable thawed periods (STP). The results demonstrated that freezing increased SOC concentration as the total organic carbon (TOC) content of all aggregate fractions peaked in the SFP (17.46 g/kg on average). The TOC content of aggregates in the UFP dropped to 7.91 g/kg on average, which revealed a dramatic SOC loss after thawing began. Thawing also decreased the proportions of particulate organic carbon (POC) compared with mineral-associated organic carbon (MAOC). The highest microbial abundance was also found in the SFP. Freezing promoted the formation of pores > 80 μm while thawing increased the regularity of pore morphology. Pore structure explained 48.77 % of the SOC variance in the thawing period, but only 19.29 % of that in the freezing period. Overall, in the freezing process, soil pore structure impacted the SOC input by mediating pore morphology. In the thawing process, soil pore structure inhibited SOC loss by enhancing the formation of pores < 15 μm. These results demonstrate new perspectives on the soil aggregate microstructure–microbe–SOC interactions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have