Abstract
BackgroundThrough the coronavirus disease 2019 (COVID-19) pandemic, portable radiography was particularly useful for assessing and monitoring the COVID-19 disease in Vietnamese field hospitals. It provides a convenient and precise picture of the progression of the disease. The purpose of this study was to evaluate the predictive value of chest radiograph reporting systems (Brixia and total severity score (TSS)) and the National Early Warning Score (NEWS) clinical score in a group of hospitalized patients with COVID-19.MethodsThis retrospective cohort study used routinely collected clinical data from polymerase chain reaction (PCR)-positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients admitted to Field Hospital District 8, Ho Chi Minh City, Vietnam, from August 2021 to September 2021. The initial chest radiographs were scored based on the TSS and Brixia scoring systems to quantify the extent of lung involvement. After the chest radiograph score was reported, two residents calculated the rate of all-cause in-hospital mortality with the consultation of expert radiologists. In this study, NEWS2 scores on hospital admission were calculated. The gradient boosting machines (GBMs) and Shapley additive exPlanations (SHAP) were applied to access the important variable and improve the accuracy of mortality prediction. The adjusted odds ratio for predictor was presented by univariate analysis and multivariate analysis.ResultsThe chest X-rays (CXRs) at the admission of 273 patients (mean age 59 years +/-16, 42.1% were male) were scored. In the univariate analysis, age, vaccination status, previous disease, NEWS2, a saturation of peripheral oxygen (Sp02), the Brixia and TSS scores were significant predictors of mortality (p-value < 0.05). In multivariate analysis, there were statistically significant differences in mortality between age, Sp02, Brixia score, and patients with previous diseases were independent predictors of mortality and hospitalization.A gradient boosting machine was performed in the train data set, which showed that the best hyperparameters for predicting the mortality of patients are the Brixia score (exclude TSS score). In the top five predictors, an increase in Brixia, age, and BMI increased the logarithmic number of probability clarifying as death status. Although the TSS and Brixia scores evaluated chest imaging, the TSS score was not essential as the Brixia score (rank 6/11). It was clear that the BMI and NEWS2 score was positively correlated with the Brixia score, and age did not affect this correlation. Meanwhile, we did not find any trend between the TSS score versus BMI and NEWS2.ConclusionWhen integrated with the BMI and NEWS2 clinical classification systems, the severity score of COVID-19 chest radiographs, particularly the Brixia score, was an excellent predictor of all-cause in-hospital mortality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.