Abstract
We propose a gauge-invariant system of the Chern-Simons-Schrodinger type on a one-dimensional lattice. By using the spatial gauge condition, we prove local and global well-posedness of the initial-value problem in the space of square summable sequences for the scalar field. We also study the existence region of the stationary bound states, which depends on the lattice spacing and the nonlinearity power. A major difficulty in the existence problem is related to the lack of variational formulation of the stationary equations. Our approach is based on the implicit function theorem in the anti-continuum limit and the solvability constraint in the continuum limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.