Abstract
We investigate the radiation from a charged particle moving outside a dielectric cylinder parallel to its axis. It is assumed that the cylinder is immersed into a homogeneous medium. The expressions are given for the vector potential and for the electric and magnetic fields. The spectral distributions are studied for three types of radiation: (i) Cherenkov radiation (CR) in the exterior medium, (ii) radiation on the guided modes of the dielectric cylinder, and (iii) emission of surface polaritons. Unlike the first two types of radiation, there is no velocity threshold for the generation of surface polaritons. The corresponding radiation is present in the spectral range where the dielectric permittivities of the cylinder and surrounding medium have opposite signs. The spectral range of the emitted surface polaritons becomes narrower with decreasing energy of the particle. The general results are illustrated for a special case of the Drude model for dispersion of the dielectric permittivity of the cylinder. We show that the presence of the cylinder may lead to the appearance of strong narrow peaks in the spectral distribution of the CR in the exterior medium. The conditions are specified for the appearance of those peaks and the corresponding heights and widths are analytically estimated. The collective effects of particles in bunches are discussed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have