Abstract
Oxidative stress, inflammation and renin-angiotensin system (RAS) activation play an important role in the nephrotoxicity which is caused by the long-term use of the immunosuppressive drug cyclosporine (CsA). This study investigates whether chenodeoxycholic acid (CDCA), an endogenous farnesoid X receptor (FXR) agonist with antioxidant and anti-inflammatory effects, modulates CsA nephrotoxicity. CsA (25mg/kg/day; s.c.) was administered to rats for 12 days. CDCA (20mg/kg/day; i.p.) injection was started 3 days before CsA and continued for 15 days. CDCA improved renal damage and function in CsA-administered rats. Renal function markers in serum, renal histology, oxidative stress, inflammation and RAS components were determined in kidney. CDCA reduced CsA-induced renal increases in NADPH oxidase 4 and NADPH oxidase 2 mRNA expressions, oxidative stress and inflammation. CDCA elevated renal FXR, small heterodimer partner-1, hypoxia-inducible factor and vascular endothelial growth factor and nuclear factor erythroid 2-related factor mRNA expressions in CsA rats. It prevents renin angiotensin system activation by reducing angiotensin II (Ang-II) levels in serum and upregulating renal mRNA expressions of Ang II type-II receptor (AT2R) and angiotensin converting enzyme 2 (ACE2), but not AT1R and ACE in CsA rats. Our results indicate that CDCA may be a protective agent against CsA-nephrotoxicity by decreasing inflammation, oxidative stress and RAS activation via AT2R and ACE2 upregulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have