Abstract
Urokinase type plasminogen activator (uPA) converts plasminogen to plasmin and is highly chemotactic for many cell types. We examined, using recombinant wild type and mutated forms of uPA, the extent to which its proteolytic properties, its growth-like domain (GFD) and/or interactions with the specific receptor (uPAR) contribute to the chemotactic activity towards vascular smooth muscle cells (SMC). Recombinant wild type uPA (r-uPA) stimulated cell migration nearly 5,8-fold, inactive r-uPA, with a mutation in the catalitic domain (r-uPA(H/Q)), 3-fold, uPA without growth factor like domain (r-uPA(GFD)), 2.6-fold, and a form containing both mutations (r-uPA(H/Q, GFD), 3.3-fold. All recombinant forms of uPA, wild type and those with mutations were equally and highly effective (IC5∼20 nM) in displacing 125I-r-uPA bound to SMC. These results indicate that additional mechanisms, not dependent on uPA's proteolytic activity or the binding ability of its GFD to uPAR, are the major contributors to its chemotactic action on SMC
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.