Abstract
OMVs derived from Helicobacter pylori can lead to cell transformation in gastric epithelium and cancer. Additionally, exosomes (Exos) released by host cells infected with H. pylori can significantly contribute to the development of diseases such as cancer. In this study, the effects of both Exos from AGS cells treated with H. pylori-derived OMVs on the expression of genes related to the TGF-β/SMAD signaling pathway in hepatocellular carcinoma (HCC) cells were investigated. The TGF-β/SMAD pathway is one of the most important pathways that regulate the development and progression of HCC. For this purpose, after treating HepG2 cells with H. pylori-derived OMVs (directly) and Exos from AGS cells treated with H. pylori-derived OMVs (indirectly), the expression levels of TGF-β, SMAD2, SMAD3, SMAD4, and ERK genes were analyzed using Real-time PCR. The findings showed that OMVs derived from H. pylori can significantly increase the expression of genes involved in the TGF-β signaling pathway, which can affect the aggressive behavior of HepG2 cells. Additionally, exosomes secreted from AGS cells or AGS cells treated with OMVs had no effect on changing the expression of the studied genes. Therefore, only the OMVs released from H. pylori can affect the TGF-β/SMAD signaling pathway in HCC cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have