Abstract
Humans who are born and raised at high altitude possess a blunted breathing response to hypoxia. The guinea-pig also has a blunted breathing response to hypoxia [1], which may be linked to its high altitude origin in South America. Our laboratory has shown that the carotid bodies of the guinea-pig are not required for the breathing response to hypoxia [1]. Whether the carotid bodies can actually detect hypoxia is uncertain because the central depressive effects associated with hypoxia may attenuate the breathing response to an otherwise potent carotid body stimulant. In a recent study, we looked for evidence of chemoreceptor activity in the whole carotid sinus nerve (CSN), but found that the whole CSN activity was dominated by baroreceptor afferent activity [2]. In this study activity was recorded from single or few-fibre CSN filaments during application of the chemoreceptor stimulants NaCN (200 μgkg-1 i.v.), 8% CO2 (60 s) and 8% O2 (60 s), from guinea-pigs (n = 10; ~420 g; ~50 days old) that were anaesthetised with ketamine/xylazine (20/1 mgkg-1). Of the 10 guinea-pigs, only 8 fibre preparations containing chemoreceptor activity were successfully obtained from 4 guinea-pigs. In general, most of the isolated nerve filaments were multi-fibre preparations. Basal chemoreceptor activity could not be detected. However, NaCN and hypercapnia increased activity in 5 of the fibre preparations that were otherwise silent, or that contained 1 or 2 baroreceptor fibres. The magnitude of response varied considerably between filaments because of the different number of individual fibres in each preparation and, thus, the difference in the actual count of action potentials. Only one of the fibre preparations responded to hypoxia with an increase in activity; no fibres responded with a decrease in activity. The physiological relevance of the latter results could be similar to that of the aortic depressor nerve (ADN) in the rat. Brophy et al. revealed that, in contrast to the general consensus, the rat ADN does contain chemoreceptor afferent fibres, and that such fibres are stimulated by chemoreceptor stimulants [3]. Kobayashi et al. agreed that chemoreceptor fibres were present, but concluded that the rat ADN does not contain a functionally significant number of chemoreceptor afferent fibres that could appreciably contribute to the generation of chemoreflexes [4]. The present study has shown that the carotid bodies of the guinea-pig can detect NaCN and hypercapnia, as expected, and also hypoxia, although the latter was a comparatively weak stimulant. In conclusion, the physiological relevance of the carotid body of the guinea-pig for the ventilatory responses to hypoxia remains uncertain.
Highlights
To be effective, inspiratory muscles on the left and right sides must contract together
We have found that a prominent gap in the column of ventral respiratory group (VRG) The nucleus tractus solitarii (NTS) relays information from primary related parvalbumin cells [2] likely corresponds to the pBc since visceral receptors to the central nervous system and is critically parvalbumin cells are rare in this zone and never co-localize with involved in the reflex control of autonomic functions
The specific protein(s) necessary for longterm facilitation (LTF) is unknown, we recently found that episodic hypoxia and LTF are associated with elevations in ventral spinal concentrations of brain derived neurotrophic factor (BDNF)
Summary
Inspiratory muscles on the left and right sides must contract together. The left and right halves of the diaphragm are synchronised because a bilateral population of medullary premotor neurones [1] simultaneously excites left and right phrenic motoneurones. Transection studies demonstrate that each side of the brainstem is capable of generating respiratory rhythm independently [2], so that left and right medullary inspiratory neurones must themselves be synchronised. The interconnections and common excitation that accomplish such synchronisation are unknown in rats. The respiratory rhythm of hypoglossal (XII) nerve discharge in transverse medullary slice preparations from neonatal rats is thought to originate in the region of the ventral respiratory group (VRG); generated there by a combination of “pacemaker” neurones [1] and their interactions with other respiratory neurones. Our goal was to discover interconnections between left and right VRG neurones as well as their connections to XII motoneurones
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.