Abstract
Enhanced catecholamine secretion from the carotid body glomus cells is hypothesized to play an essential role in mediating the peripheral chemoreceptor response to hypoxia. To test aspects of this hypothesis, the relationship between catecholamine secretion and nerve activity was examined during repetitive hypoxia stimuli and after catecholamine depletion with reserpine. Single-fiber afferent serve activity was measured along with an estimate of free tissue catecholamine by using Nafion-coated carbon-fiber microelectrodes placed in rat carotid bodies in vitro. Baseline and stimulated nerve and catecholamine levels were quantified during repetitive stimulation (anoxia of 1-min duration; PO2 = 0 Torr at nadir, repeated each 200 s). Peak stimulated catecholamine progressively decreased from 26.4 +/- 2.6 microM for the first stimulus to 7.5 +/- 0.9 microM for the fifth stimulus (n = 15), but peak nerve activity was much less affected (23.0 +/- 1.9 Hz, first trial; 19.9 +/- 1.4 Hz, fifth trial). An exposure to moderate hypoxia (approximately 80 Torr) before the repetitive anoxia stimuli produced catecholamine levels comparable to those obtained during repetitive anoxia, but peak nerve activity was significantly less (22.5 +/- 3.4 vs. 12.7 +/- 2.1 Hz). Pretreatment with reserpine (1 mg/100 g) resulted in a large reduction in the average hypoxia-induced catecholamine response (1.4 +/- 0.3 microM, n = 9), but peak nerve activity was not different from nontreated controls. These results demonstrate an independence between carotid body catecholamine secretion and nerve activity, suggesting that nerve excitation is, at least, partially mediated through pathways independent of granule secretion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have