Abstract

During the past three decades, evolutionary computing techniques have grown manifold in tackling all sorts of optimization problems. Genetic algorithm (GA) is one of the most popular EAs because it is easy to implement and is conducive for noisy environment. Similarly, amongst several swarm intelligence techniques, bacterial foraging optimization (BFO) is the recent popular algorithm being used for many practical applications. Depending on the complexity of the problem concerned, there is need for hybridized techniques which help in balancing exploration and exploitation capability over the search space. Many hybridized techniques have been developed recently to tackle such problems. This paper proposes a hybridization of GA and BFO to solve a real-life unconstrained electrical engineering problem. This unconstrained optimization problem is a model order reduction (MOR) problem of linear time invariant continuous single input and single output (SISO) system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.