Abstract

A series of related acetylacetonate-carbonyl-rhodium compounds substituted by functionalized phosphines has been prepared in good to excellent yields by the reaction of [Rh(acac)(CO)2] (acac is acetylacetonate) with the corresponding allyl-, cyanomethyl- or cyanoethyl-substituted phosphines. All compounds were fully characterized by 31P, 1H, 13C NMR and IR spectroscopy. The X-ray structures of (acetylacetonato-κ2O,O')(tert-butylphosphanedicarbonitrile-κP)carbonylrhodium(I), [Rh(C5H7O2)(CO)(C8H13N2)] or [Rh(acac)(CO)(tBuP(CH2CN)2}] (2b), (acetylacetonato-κ2O,O')carbonyl[3-(diphenylphosphanyl)propanenitrile-κP]rhodium(I), [Rh(C5H7O2)(C15H14N)(CO)] or [Rh(acac)(CO){Ph2P(CH2CH2CN)}] (2h), and (acetylacetonato-κ2O,O')carbonyl[3-(di-tert-butylphosphanyl)propanenitrile-κP]rhodium(I), [Rh(C5H7O2)(C11H22N)(CO)] or [Rh(acac)(CO){tBu2P(CH2CH2CN)}] (2i), showed a square-planar geometry around the Rh atom with a significant trans influence over the acetylacetonate moiety, evidenced by long Rh-O bond lengths as expected for poor π-acceptor phosphines. The Rh-P distances displayed an inverse linear dependence with the coupling constants JP-Rh and the IR ν(C[triple-bond]O) bands, which accounts for the Rh-P electronic bonding feature (poor π-acceptors) of these complexes. A combined study from density functional theory (DFT) calculations and an evaluation of the intramolecular H...Rh contacts from X-ray diffraction data allowed a comparison of the conformational preferences of these complexes in the solid state versus the isolated compounds in the gas phase. For 2b, 2h and 2i, an energy-framework study evidenced that the crystal structures are mainly governed by dispersive energy. In fact, strong pairwise molecular dispersive interactions are responsible for the columnar arrangement observed in these complexes. A Hirshfeld surface analysis employing three-dimensional molecular surface contours and two-dimensional fingerprint plots indicated that the structures are stabilized by H...H, C...H, H...O, H...N and H...Rh intermolecular interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.