Abstract

The performance and service life of glass-or ceramic-filled polymeric composites depend on the nature of their resin, filler and interfacial phases as well as the efficacy of the polymerization process. The synergy that exists between the organic polymer matrix and the usually inorganic reinforcing filler phase is principally mediated by the interfacial/interphasial phase. This latter phase develops as a result of the dual reactivity of a silane coupling agent, (YRSiX3), a bifunctional molecule capable of reacting with the silanol groups of glass or ceramic fillers via its silane functional group (–SiX3) to form Si-O-Si- bonds to filler surfaces, and also with the resin phase by graft copolymerization via its Y functional group, usually a methacrylic vinyl group. In this paper, we explore some of the chemistry of organosilanes, especially that of functional organosilanes (or silane coupling agents as they are commonly known) that are used to mediate interfacial bonding in mineral reinforced polymeric composites. The chemistry of organosilanes can be quite complex involving hydrolytically initiated self-condensation reactions in solvents (including monomers) that can culminate in polymeric silsesquioxane structures, exchange reactions with hydroxylated or carboxylated monomers to form silyl ethers and esters, as well as the formation of silane derived interfaces by adhesive coupling with siliceous mineral surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.