Abstract

The synthesis in situ of cadmium sulfide semiconductors in AOT reverse micelles produces smaller and more monodispersed particles than are obtained in Triton reverse micelles or in aqueous solution. When gelatine is added to the previous solution, the semiconductor is entrapped in a hydrocarbon gel and it size remains the same as that obtained in reverse micelles. The size of the sulfite cadmium aggregate formed in AOT hydrocarbon gels is similar to that obtained under similar conditions in AOT reverse micelles. AOT surfactant can play the role of stabilizing agent. However, a more efficient stabilization is obtained by adding to AOT reverse micelles another stabilizing agent such as sodium hexametaphosphate. The crystallite size is strongly dependent on the ratio of the cadmium and sulfur ions, defined by x = (Cd/sup 2 +/)/(S/sup 2 -//. The yield of reduced viologen obtained by CdS irradiation in AOT reverse micelles is 15 times more efficient than that formed in aqueous solutions whereas it is only three times more in hydrocarbon gels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call