Abstract
ABSTRACTThe OH*, CH* and CO chemiluminescence signals of methane/air premixed laminar flames stabilized over a nonadiabatic porous plug burner are compared to the signals measured from a nearly adiabatic conical flame in a series of experiments. The impact of reactant stream temperature is also characterized. A numerical study based on 1-D flame models then follows to support the experimental results. It is found both in experiments and in simulations that the linear relationship between the mixture flowrate and the chemiluminescence intensities is no longer valid when flames are closely attached to the burner surface due to the heat transfer between the flame and the burner. The transition between the linear and the nonlinear regimes is identified as the gas flow velocity drops below the adiabatic laminar burning velocity calculated at the bulk temperature of the flow leaving the burner. When the mass flowrate is kept constant, preheating of the reactant stream increases the chemiluminescence intensity for a freely propagating flame, but has almost no impact for a burner-stabilized flame. It is finally found that the OH* and CH* chemiluminescence intensities correlate with the burnt gas temperature for the adiabatic but also the nonadiabatic flames. The underlying physical mechanisms are discussed. Finally, the evolution of the CH*/OH* ratio with the inlet gas velocity is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.