Abstract
In the previous overview papers [1, 2], the author has identified that ‘long cell action’ corrosion plays a pivotal role in practically all unresolved corrosion issues, irrespective of reactor types and operation. In trying to confirm the existence of radiation-induced ‘long-cell’ action (macro) corrosion cell in the primary cooling system of LWRs, the author attempted to theoretically reproduce the electrochemical potential difference demonstrated during experiments at the INCA Loop in Sweden and the NRI-Rez Loop in the Czech Republic [3, 4]. By performing a radiation chemistry kinetics study combined with electrochemistry calculations, the hydrated electrons, e−aq, reacting mainly with stable molecules, are found to be responsible for inducing a large portion of the potential difference both in the PWR and BWR water chemistry environment. Considering large uncertainties, the author used the standard equilibrium potential as a fitting parameter in the previous studies [3, 4]. The standard chemical potential of the hydrated electron estimated from the fitting parameter is far less than the generally accepted value of 2.86 V. In order to resolve the large discrepancy between the generally accepted values and the estimation from the fitting parameter, the author has developed a ‘mixed’ radiation-electrochemistry formalism, which enables theoretical reconstruction of the observed potential differences more clearly. The previous verifications are updated by using this approach. Through these studies, the author has confirmed the existence of the ‘long cell’ action corrosion mechanism existing in the water-cooled reactors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have