Abstract

Silver nanowires (AgNWs) with a low diameter, high aspect ratio, stable suspension, and easy synthesis have recently attracted the optoelectronic industry as a low-cost alternative to indium tin oxide transparent conductive films. However, silver nanowires are not chemically stable, and their conductivity diminishes over time due to reactions with atmospheric components. This is a bottleneck for their wide industrial applications. In this study, we aim to address this issue by synthesizing silver nanowires with an average diameter of approximately 65 nm and a length of approximately 13 µm. The prepared Ag nanowires are then applied to fabricate transparent, flexible, and chemically stable conductive films. The fabrication includes spraying of silver nanowires suspension on a glass substrate followed by Dr. blade coating of polystyrene (PS) solution and delamination of the PS-AgNWs film. The resulting film exhibits an optimum sheet resistance of 24 Ω/□ and transmittance of 84%. To further enhance the stability of the transparent conductive film, the facial and scalable double pulse electrodeposition method is used for coating of gold on the exposed surface of the AgNWs embedded in PS. The final transparent film with gold coating demonstrates a remarkable stability under harsh conditions including long exposure to UV light and nitric acid solution. After 100 min of UV/Ozone treatment, the increase in sheet resistance of the optimal PS-AgNW@Au sample is 15.6 times lower than the samples without gold coating. In addition, the change in sheet resistance after 2000 bending cycles in the optimal PS-AgNW@Au electrode is measured and it showed an increase of only 22% of its initial sheet resistance indicating its good flexibility. The proposed electrode performs an excellent chemical stability, good conductivity, transparency, and flexibility that makes it a potential candidate for various optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.