Abstract
Hydrogen peroxide (H2O2) residue in foodstuffs will bring great harm to human health. We immobilize the composite of the reduced polyaniline (PANIR) modified gold nanoparticles on the surface of ITO (ITO/AuNPs/PANIR) to develop surface-enhanced Raman scattering (SERS) sensor for H2O2.detection. The principle is that PANIR is oxidized by H2O2 to generate a new SERS peak at 1460 cm−1 for realizing quantitative analysis of H2O2. Fe2+-Fenton reaction is introduced to catalytically react with H2O2 to hydroxyl radical, which speeds up the oxidation of PANIR. Before SERS detection, acidic treatment could guarantee the reduced state of PANIR in composite. Limit of detection of ITO/AuNPs/PANIR-based SERS assay for H2O2 is down to 1.78 × 10−12 mol/L and a good linear relationship from 1 × 10−10 to 3.16 × 10−7 mol/L is achieved. Furthermore, the SERS sensor could be regenerated by acidic treatment. As a scenario, the renewable SERS sensor is utilized to monitor H2O2 residues in food and environmental samples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have