Abstract

Hydrogen peroxide (H2O2) residue in foodstuffs will bring great harm to human health. We immobilize the composite of the reduced polyaniline (PANIR) modified gold nanoparticles on the surface of ITO (ITO/AuNPs/PANIR) to develop surface-enhanced Raman scattering (SERS) sensor for H2O2.detection. The principle is that PANIR is oxidized by H2O2 to generate a new SERS peak at 1460 cm−1 for realizing quantitative analysis of H2O2. Fe2+-Fenton reaction is introduced to catalytically react with H2O2 to hydroxyl radical, which speeds up the oxidation of PANIR. Before SERS detection, acidic treatment could guarantee the reduced state of PANIR in composite. Limit of detection of ITO/AuNPs/PANIR-based SERS assay for H2O2 is down to 1.78 × 10−12 mol/L and a good linear relationship from 1 × 10−10 to 3.16 × 10−7 mol/L is achieved. Furthermore, the SERS sensor could be regenerated by acidic treatment. As a scenario, the renewable SERS sensor is utilized to monitor H2O2 residues in food and environmental samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.