Abstract

Abstract An innovative and chemically amended succinic anhydride cellulose nanomaterial (S-CNM) adsorbent was synthesized from dried stem of Eichhornia crassipes weed, and was characterized for functional groups, crystallite size, surface morphology, morphological structure and particle size using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) instruments, respectively. Previously characterized S-CNM was investigated to eliminate nickel and lead from secondary runoff wastewater (SERWW). Physicochemical properties of SERWW including organic matter (OM), nutrients, total inorganic nitrogen (TIN) and total phosphorus (TP) on the elimination capabilities of heavy metals were investigated. The S-CNM adsorbent was used fruitfully to exclude nickel and lead from SERWW. The mechanism study showed that the Langmuir isotherm was suited for lead removal and Freundlich isotherm was suited for nickel removal with maximum eliminating capability (qmax) of 156.25 and 60.24 mg g−1 using the S-CNM adsorbent, respectively. The elimination kinetic process fits well with pseudo-second-order and its data recommending the materials (S-CNM) are effective for wastewater treatment. The lead and nickel uptake capacities were influenced by the presence of positively charged ions. The S-CNM adsorbent indicated excellent reproducibility and was considered as a capable adsorption resource to eliminate lead and nickel from SERWW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call