Abstract

Doped-ceria is an attractive electrolyte material for solid oxide electrolysis cells (SOECs) operated at intermediate temperatures. However, ceria is highly prone to break down under high applied voltages and low oxygen partial pressures at the fuel side. This phenomenon is analyzed for the typical Sm0.2Ce0.8O1.9−δ electrolyte based on the chemically-induced stress, which is caused by the inhomogeneous distribution of oxygen non-stoichiometry throughout the thickness of electrolyte plate. The sensitivities of the maximum tensile stresses are explored under typical SOEC operating parameters such as temperature, applied voltage and oxygen partial pressure. Varying from short-circuit of solid oxide fuel cell (SOFC) mode to high voltage of SOEC conditions, the applied voltage sharpens the maximum tensile stress by seven times and raises the minimum permitted oxygen partial pressure at the cathode-electrolyte interface by a factor of 104.5 at most. The analysis results indicate that a ceria-based electrolyte under SOEC conditions denotes a definite trend of collapse at 700 °C even 600 °C, suggesting the inapplicability of doped-ceria electrolyte in SOEC mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.