Abstract

The fast reduction and regeneration of triiodide/iodide (I3−/I−) redox couple is one of the key issues for low cost dye-sensitized solar cells (DSSCs). Compared with traditional and expensive Pt counter electrodes (CEs) that act as the catalyst for reduction and regeneration of I3−/I−, the low-cost and high-efficiency CEs are highly sought after for Pt replacement. Here, we report an efficient strategy for synthesis of B and N co-doped graphene (B,N-G) samples via chemically grafting ionic liquid (IL), followed by thermal annealing. The corresponding photovoltaic and electrochemical performances were investigated in detail. It was found that chemically grafting via IL is an efficient strategy for inhibiting and avoiding the agglomeration and restacking of graphene oxide (GO) sheets to a great degree in comparison to that of physically mixed IL and GO, further leading to efficient doping. When evaluated as CEs for DSSCs, an annealing temperature-dependent electrochemical behavior is demonstrated in B,N-G samples. The B,N-G-1200 annealed at 1200°C derived from IL-grafted GO as CE has demonstrated the best electrochemical performance, yielding a power conversion efficiency of 8.08% the synergetic effects of co-doped B and N, which is superior to 6.34% of Pt CE. The present work will provide a simple and efficient method for configuring the heteroatom-doped graphene or carbon-related electrode materials with high electrocatalytic activity for high-performance and low-cost energy storage and conversion devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.