Abstract

We report chemically tunable n-type titanium oxides using ethanolamine as a nitrogen dopant source. As the amount of ethanolamine added to the titanium oxide precursor during synthesis increases, the Fermi level of the resulting titanium oxides (ethanolamine-incorporated titanium oxides) significantly changes from -4.9 eV to -4.3 eV, and their free charge carrier densities are enhanced by two orders of magnitudes, reaching up to 5 × 1018 cm-3. Unexpectedly, a basic ethanolamine reinforces not only the n-type properties of titanium oxides, but also their basicity, which facilitates acid-base ionic junctions in contact with acidic materials. The enhanced charge carrier density and basicity of the chemically tuned titanium oxides enable multi-junction solar cells to have interconnecting junctions consisting of basic n-type titanium oxides and acidic p-type PEDOT:PSS to gain high open-circuit voltages of 1.44 V and 2.25 V from tandem and triple architectures, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.