Abstract

A series of cross-linkable hole-transporting materials (X-HTMs) consisting of indacenodithiophene, bithiophene, and thiophene units bookended by two triarylamine groups have been designed and synthesized to investigate their suitability as new anode buffer layer for bulk heterojunction polymer solar cells (PSCs). These X-HTMs can be thermally cross-linked at temperature between 150 and 180 °C to form robust, solvent-resistant films for subsequent spin-coating of another upper layer. Energy levels of these cross-linked materials were measured by cyclic voltammetry, and the data suggest that these X-HTMs have desirable hole-collecting and electron-blocking abilities to function as an anode buffer layer for PSCs. In addition, by incorporating thiophene or fused ring units into the X-HTM backbone, it effectively improved the hole-carrier motilities. To further improve the conductivity and optical transparency for PSCs, the X-HTM films were p-doped with nitrosonium hexafluoroantimonate (NOSbF6). The doped X-HT...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.