Abstract

In this work, uniform poly(3-methylthiophene) (P3MT) films are fabricated on indium-tin oxide (ITO) surfaces using surface-initiated Kumada catalyst-transfer polycondensation (SI-KCTP) from surface-bound arylnickel(II) bromide initiators. The P3MT interfacial layer is covalently bound to the ITO surface, thereby preventing possible delamination during the processing of additional layers. These surface-bound P3MT layers successfully serve as the hole-transport layer for solution-processed bulk heterojunction polymer solar cells. Efficiencies greater than 5% have been achieved on devices based on doped thin P3MT interfacial layers. Moreover, because of the excellent stability of the covalently immobilized P3MT on ITO substrates, devices based on reused P3MT/ITO substrates extracted from old devices exhibit efficiencies similar to those of the original devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.