Abstract
Genetic code expansion has pushed protein chemistry past the canonical 22 amino acids. The key enzymes that make this possible are engineered aminoacyl tRNA synthetases. However, as the number of genetically encoded amino acids has increased over the years, obvious limits in the type and size of novel side chains that can be accommodated by the synthetase enzyme become apparent. Here, we show that chemically acylating tRNAs allow for robust, site-specific incorporation of unnatural amino acids into proteins in zebrafish embryos, an important model organism for human health and development. We apply this approach to incorporate a unique photocaged histidine analogue for which synthetase engineering efforts have failed. Additionally, we demonstrate optical control over different enzymes in live embryos by installing photocaged histidine into their active sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.