Abstract
Over geological time scales, continental silicate weathering is considered as a critical carbon sink that regulates long-term climate feedback. By contrast, recent studies indicate that sulfide oxidation during weathering can be as a potential carbon source. However, whether chemical weathering in glacial conditions characterized by extreme erosion is a net carbon sink or source remains elusive. Here, we present the seasonal carbon cycle processes in a typical glacier catchment, via high-resolution (weekly) river water sampling during the whole 2017 in the Laohugou river, northeastern Tibetan Plateau. Our seasonal result shows that the release of CO2 by sulfide oxidation during the monsoon period can be much faster than CO2 consumption through weathering of silicate rocks, with maximum of ∼26 times. Extending to global glacial basins, we observed a consistent pattern that inorganic carbon releases in alpine glaciers are faster than atmospheric CO2 consumption. We propose that weathering in global glacial environment acts as a significant carbon source, and thus affects climate feedback.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.