Abstract

Due to the high diffusivity of the chemical species, chemical vapor infiltration (CVI) is a suitable process for the conformal coverage of objects with large dimensions and complex shape geometry. Its large scale capacity and high reproducibility have made the technique favorable for the deposition of non-oxide ceramics. There are few works on other materials and metal-organic compounds are rarely used as molecular precursors. In this study we focus on the deposition of anatase thin films on substrates with large surface area (microfibers) for photocatalytic air treatment systems. Titanium tetra-isopropoxide (TTIP) was used as precursor without additional oxygen source. Using low mole fractions (26–124 × 10 − 5 ) and low deposition temperatures (300–400 °C), a relatively good thickness uniformity was obtained along the reactor axis. Infiltration experiments were achieved in this temperature range and under 1 Torr for high TTIP diffusivity (110–146 cm 2 s − 1 ) and low initial Thiele modulus (0.11–0.13) values. Photocatalytic activity of TiO 2 coated glass microfiber samples depends on the film morphology, average thickness and infiltration efficiency. It is shown that this later parameter plays a major role due to the increase of active surface area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.