Abstract

Metallic thin films are key components in electronic devices and catalytic applications. Deposition of a conformal metallic thin film requires using volatile precursor molecules in a chemical vapor deposition (CVD) process. The metal centers in such molecules typically have a positive valence, meaning that reduction of the metal centers is required on the film surface. Powerful molecular reducing agents for electropositive metals are scarce and hamper the exploration of CVD of electropositive metals. The authors present a new CVD method for depositing metallic films where free electrons in a plasma discharge are utilized to reduce the metal centers of chemisorbed precursor molecules. They demonstrate this method by depositing Fe, Co, and Ni from their corresponding metallocenes using electrons from an argon plasma as a reducing agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.