Abstract

The use of natural fibres for polymer composite applications has been widely researched due to the biodegradable and lightweight nature of natural fibres. To achieve good adhesion and compatibility between the matrix and the fibre filler, prior modification of the fibre surface via the use of various methods has been found to be effective. The natural fibres have been modified using chemical, physical, radiation, grafting and biological methods. The current study aims to evaluate the effect of sodium hydroxide-treated waste pineapple leaf fibres (PALF) content on the chemical, thermal, and morphological properties of polybutylene succinate (PBS) composites. PBS-PALF composites with fibre content ranging from 0 to 20 wt% were prepared using an internal mixer and their properties were studied using Fourier transform infrared (FTIR), X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA) and Scanning electron microscope (SEM). The FTIR results showed no noticeable functionality differences among the composites, however, carbonyl groups from PBS polymer at ∼1700 cm−1 and hydroxyl groups from PALF at ∼3000 cm−1 were observed in the composites. The water absorption uptake of the composites increased with fibre content due to the hydrophilic nature of the PALF fibres and the highest water absorption percentage achieved was ∼30 %. The incorporation of the fibres into the PBS matrix decreased the crystallinity of the composites as shown by the XRD peaks at 2ϴ = 22 and 30°. SEM images of the composites with 20 wt% exhibited morphologies where the fibres protruded out from the polymer matrix, and this was ascribed to the agglomerated fibres which were poorly mixed with the matrix at the higher fibre content. Overall, the incorporation of high PALF content in the composites disrupted the crystallinity and thermal stability of the PBS matrix. The composites have potential in industrial agricultural mulching film applications due to their sustainability characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call