Abstract

Short natural fibres replace synthetic fibres as filler in natural rubber (NR) as they are environmentally beneficial and sustainable. This study investigates the cure behaviour and tensile properties of pineapple leaf fibre (PALF) reinforced NR composites at various fibre contents. The fibre contents are varied at 0, 10, 20 and 30 parts per hundred rubber (phr). PALF reinforced NR composites are prepared using a two-roll mill. Surface morphology of tensile fractured specimens is examined using scanning electron microscopy (SEM). The results demonstrated that the optimum cure time decreases significantly with greater fibre content. The hardness value increases gradually with increasing filler content. The stress-strain graphs show an increasing trend in stress at higher fibre content particularly at low strain regions. On the contrary, the tensile strength reduces when the fibre content is increased up to 30 phr. SEM analysis reveals that the fibre-matrix adhesion is considerably poor due to the fibre pullout phenomenon observed. It is indicated that higher fibre content could be possibly reinforced to NR to achieve high deformation stress at incredibly low strain regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.