Abstract

AbstractFuel cells allow the production of energy from a clean electrochemical reaction. Among various types, the solid oxide fuel cell (SOFC) operates at high temperatures, allowing the conversion of hydrogen fuel into electricity, where water is generated as a by‐product. Strontium‐doped lanthanum manganite (La1‐xSrxMnO3, LSM) is commonly used as a cathodic material in traditional high‐temperature solid oxide fuel cells. Nowadays, the operating temperature of SOFCs should be reduced to 600–800°C due to improved fine electrolyte production techniques and the use of some intermediate temperature electrolytes. The LSM is not a suitable cathode for SOFCs operating in this temperature range, since it does not have a high enough conductivity and its electrochemical activity is very low as well. In this article, the performance improvement of LSM is described by mixing with calcium zirconate. The composite ceramic materials CaZrO3−La0.6Sr0.4MnO3, CaZrO3−NiO, and CaZrO3 were synthesized by combustion method, for application as a SOFC single cell. The results prove that the synthesized materials have potential to be used in a SOFC cell. At 800°C, was confirmed the CaZrO3 formation. Through Electrochemical impedance spectroscopy, the analysis presented low activation energy and the materials have been demonstrated to be compatible, an important fact to construct a suitable SOFC cell. The obtained activation energy was 0.90, 0.85, and 0.51 eV for the electrolyte, the anode and the cathode, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.