Abstract

Rocks and soils excavated from civil works frequently present high concentrations of naturally occurring leachable (oxy-)anions. This situation raises concerns regarding the potential transfer of contaminants to groundwater in a storage scenario. This study was carried out to give practical insights on the ability of various stabilizing agents to reduce molybdenum (Mo), selenium (Se), fluorides and sulfates mobility in four types of naturally contaminated excavated materials. Based on standardized leaching tests results, Mo and Se were effectively immobilized after zero valent iron or iron salts additions. Although alkaline materials were found to effectively reduce fluorides and sulfates mobility, their addition occasionally caused a subsequent increase in Mo and Se leaching due to pH increase. None of the reagents tested allowed a simultaneous immobilization of all (oxy-)anions sufficient to reach regulatory threshold values. The remaining difficulties were related to: (i) sulfates leaching from gypsum-rich samples, (ii) fluorides leaching from clayey samples and (iii) Mo and sulfates mobility from tunnel muck. Altogether, the study revealed that the choice of stabilizing agents should be made depending on the speciation of the contaminant or else an opposite impact (i.e., increase in contaminant mobility) might be triggered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.