Abstract

Phase pure bismuth ferrite (BiFeO3) thin films with (001)-oriented epitaxial structure are realized on lanthanum strontium manganite (La0.67Sr0.33MnO3) buffered (001)-SrTiO3 substrates by chemical solution deposition. The annealing process is optimized such that a stoichiometric precursor can be used to accurately control the Bi:Fe ratio. Ferroelectric, dielectric, and resistive switching behaviours are investigated for 40 nm, 70 nm, and 150 nm BFO thin films. While the thinnest film (40 nm) shows very leaky loops, square and fully saturated polarization hysteresis loops are shown for the thicker films. The highest remanent polarization (2Pr = 100 μC/cm2) and relative dielectric constant (εr = 613) are obtained in the 150 nm BFO thin film. High cycle fatigue tests show that the thick films are resistant to polarization fatigue. Piezoresponse force microscopy results show that the domain structure varies with thickness. Resistive switching and polarization mediated diode effects are also observed. These robust properties suggest that chemical solution deposition derived BiFeO3 thin films can offer a viable low cost alternative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.