Abstract

Microbes secrete molecules that modify their environment. Here, we demonstrate a class of synthetic disaccharide derivatives (DSDs) that mimics and dominates the activity of naturally secreted rhamnolipids by Pseudomonas aeruginosa. The DSDs exhibit the dual function of activating and inhibiting the swarming motility through a concentration-dependent activity reversal that is characteristic of signaling molecules. Whereas DSDs tethered with a saturated farnesyl group exhibit inhibition of both biofilm formation and swarming motility, with higher activities than rhamnolipids, a saturated farnesyl tethered with a sulfonate group only inhibits swarming motility but promote biofilm formation. These results identified important structural elements for controlling swarming motility, biofilm formation, and bacterial adhesion and suggest an effective chemical approach to control intertwined signaling processes that are important for biofilm formation and motilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.