Abstract

Calmodulin (CaM) is a ubiquitous cytosolic Ca(2+)-binding protein able to bind and regulate hundreds of different proteins. It consists of two globular domains joined by a flexible central linker region. Each one of these domains contains two EF hand pairs capable of binding to Ca(2+). Upon Ca(2+) binding CaM undergoes a conformational change exposing hydrophobic patches that interact with its intracellular target proteins. CaM is able to bind to target proteins in the Ca(2+)-replete and Ca(2+)-deplete forms. To study the Ca(2+)-dependent/independent properties of binding and activation of target proteins by CaM, CaM constructs with Ca(2+) binding disrupting mutations of Asp to Ala at position one of each EF hand have been used. One target protein of CaM is nitric oxide synthase, which catalyzes the production of nitric oxide. At elevated Ca(2+) concentrations, CaM binds to neuronal NOS and endothelial NOS, making them the Ca(2+)-dependent NOS enzymes. In contrast, inducible NOS is transcriptionally regulated in vivo and binds to CaM at basal levels of Ca(2+). Here we report the NMR backbone and sidechain resonance assignments of C-lobe Ca(2+)-replete and deplete CaM12, N-lobe Ca(2+)-replete and deplete CaM34, CaM1234 in the absence of Ca(2+) and N-lobe Ca(2+)-replete CaM34 with the iNOS CaM-binding domain peptide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.