Abstract

The novel superfine pulverized coal combustion technology shows plenty of advantages, and a complementary description of the representative molecular structures plays a paramount role in better understanding its utilization processes. In this work, the carbon skeletal features of superfine pulverized coal were elucidated through 13C NMR analysis. The changes of the coal chemical properties after the demineralization treatment were characterized. Furthermore, the influence of particle size on coal molecular structures was focused on, and the detailed evolution mechanisms were discussed based on the structural and lattice parameters. The final results indicate that decreasing particle size engenders the local coal maturation due to the thermal and mechanical strain effects. The oxygen-substituted aromatic carbon increases in smaller coal fractions at the expense of oxygenated aliphatic carbon. Additionally, the oxidation effect of atmospheric oxygen during the superfine comminution is confirmed. Furthermore...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.