Abstract

Sorption processes can be used to study different characteristics of coal properties, such as gas content (coalbed methane potential of a deposit), gas diffusion, porosity, internal surface area, etc. Coal microstructure (porosity system) is relevant for gas flow behaviour in coal and, consequently, directly influences gas recovery from the coalbed. This paper addresses the determination of coal porosity (namely micro- and macroporosity) in relation to the molecular size of different gases. Experiments entailed a sorption process, which includes the direct method of determining the “void volume” of samples using different gases (helium, nitrogen, carbon dioxide, and methane). Because gas behaviour depends on pressure and temperature conditions, it is critical, in each case, to know the gas characteristics, especially the compressibility factor. The experimental conditions of the sorption process were as follows: temperature in the bath 35 °C; sample with moisture equal to or greater than the moisture-holding capacity (MHC), particle size of sample less than 212 μm, and mass ca. 100 g. The present investigation was designed to confirm that when performing measurements of the coal void volume with helium and nitrogen, there are only small and insignificant changes in the volume determinations. Inducing great shrinkage and swelling effects in the coal molecular structure, carbon dioxide leads to “abnormal” negative values in coal void volume calculations, since the rate of sorbed and free gas is very high. In fact, when in contact with the coal structure, carbon dioxide is so strongly retained that the sorbed gas volume is much higher than the free gas volume. However, shrinkage and swelling effects in coal structure induced by carbon dioxide are fully reversible. Methane also induces shrinkage and swelling when in contact with coal molecular structure, but these effects, although smaller than those induced by carbon dioxide, are irreversible and increase the coal volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.