Abstract

Using the two-way images of phenolic compounds from high-performance liquid chromatography-ultraviolet diode array detection (HPLC-DAD), floral and chestnut honey from Turkey were successfully differentiated. A fuzzy rule-building expert system (FuRES), support vector machine classification tree (SVMTreeG), and super partial least-square discriminant analysis (sPLS-DA) were used to develop classification models. Normalization, retention time alignment, square root transform, and dissimilarity kernel were evaluated as data preprocessing methods. The bootstrapped Latin partition was used with 100 bootstraps and 4 partitions. Classification rates of FuRES and SVMTreeG with a square root transform were 97.6±0.4% and 97.6±0.4% for classifying the type of honey, respectively. The measures of precision are 95% confidence intervals. HPLC-DAD was demonstrated as a reliable analytical method for authentication of honey.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.