Abstract

Origanum vulgare L. (Lamiaceae) is a widespread flavoring culinary and medicinal herb. The present study aimed at investigating the antimicrobial activity of Origanum vulgare (OV) essential oil (EO) through illustrating its biostatic, biocidal and the dynamics of the biocidal activity against 11 different microorganisms. GC/MS of OV EO allowed the identification of 32 compounds representing 99.94% of the oil. The two major identified compounds were terpinen-4-ol (38.35%) and trans-sabinene hydrate (10.06%). Different methods were employed to illustrate the biostatic activity of OV EO. Results of the biostatic studies on OV EO using agar and broth dilution methods showed that Staphylococcus aureus (S. aureus) was the most sensitive organism; with a Minimum inhibitor concentration (MIC) 1.18 mg/ml. Agar diffusion method showed that the highest activity was observed against Bordetella bronchiseptica (Br. bronchiseptica), Saccharomyces cerevisiae (S. cerevisiae), Bacillus subtilis (B. subtilus) and Staphylococcus epidermidis (S. epidermidis) with inhibition zones 38 ± 1.5, 29.5 ± 0.8, 26.9 ± 0.9 and 26.9 ± 1.1 mm, respectively. Studying the dynamics of 1% v/v OV essential oil emulsion over a period of 6 h revealed that Escherichia coli (E. coli), B. subtilis, S. epidermidis and S. cerevisiae had the fastest response. Also increasing concentrations of OV oil emulsion increased the rate of cell killing and the duration of growth lag phase increased correspondingly. These data indicated that OV EO produces a concentration and time-dependent antimicrobial activity.

Highlights

  • Some medicinal and aromatic plants (MAPs) are a rich source of essential oils, which have proven to possess a wide variety of biological activities such as antimicrobial, anti-inflammatory, antiseptic, anticancer, analgesic and sedative effects (Bhalla et al 2013; Dhifi et al 2016)

  • Agar diffusion method showed that the highest activity was observed against Br. bronchiseptica, Sac. cerevisiae, B. subtilis and S. epidermidis with inhibition zones 38 ± 1.5, 29.5 ± 0.8, 26.9 ± 0.9 and 26.9 ± 1.1 mm, respectively

  • GC/MS analysis of the hydro-distilled Origanum vulgare (OV) essential oil (EO) allowed the identification of 32 compounds representing 99.94% of the oil

Read more

Summary

Introduction

Some medicinal and aromatic plants (MAPs) are a rich source of essential oils, which have proven to possess a wide variety of biological activities such as antimicrobial, anti-inflammatory, antiseptic, anticancer, analgesic and sedative effects (Bhalla et al 2013; Dhifi et al 2016). The plant’s essential oil and different extracts. OV cultivated in Spain contained in its essential oil cis-sabinene hydrate (37%) and terpinene-4-acetate (16.2%). This compositional variation may be attributed to difference in growth conditions, origin of plant collection, stage of plant maturity, physiological modifications in response to various environmental factors and stresses, harvesting time, drying methods, method of essential oil isolation or even the solvents used for the GC/MS analysis (Arranz et al 2015; Moghaddam and Mehdizadeh 2017)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call