Abstract

Suitable coordination between the new wave of nanostructured materials and catalyst of interests play a critical role in developing nanobiocatalysts with new or improved functionalities. In this context, enzymes with natural origin are versatile biocatalysts with multifunctional characteristics and have been widely utilized in various sectors such as environmental, energy, biomedical, pharmaceutical, cosmeceutical, nutraceutical, fine chemicals, agro-industrial, and food industry, etc. The deployment of enzymes in a non-natural environment has limited boundaries such as the high production cost, challenging separation, purification, and liability to deactivation under non-ambient conditions. These drawbacks can be overcome by the design and fabrication of novel hybrid and functionalized nanobiocatalyst. However, appropriate coordination at chemical, physical, and the biological level is highly requisite to engineer such nanobiocatalysts of supreme interests. Currently, the generation and development of diverse nanomaterials along with new strategies have been established from the nanotechnology perspectives, where the integration of naturally occurring biocatalysts with suitable nanomaterials offer an exceptional corridor to upgrade the catalytic performances of pristine enzymes. Recent innovations in nano-biotechnology furnished numerous opportunities to integrate natural biocatalysts to a range of nanostructured materials with unique attributes. These newly introduced nanomaterials show/impart additional characteristics which enzyme in their pristine form fails to demonstrate on their own. Manipulation of these nanomaterials for enzyme delivery or recovery, remote access for activation or deactivation of enzymatic activity, and new catalytic entities with harmonizing functionalities has taken this field to a new horizon with pronounced biotechnological applications in the coming years. The present review emphases on the recent developments along with the exploitation of nanostructured materials including nanofibers, hybrid nanoflowers, mesoporous/nanoporous carriers, carbon nanotubes, magnetic or non-magnetic nanoparticles, and nanocomposites as support carriers for the immobilization of different enzymes to develop nanobiocatalysts with potential activity and stability characteristics. In addition, strategies for the synthesis and various types of new functionalization approaches, particularly the chemical method for its capability to modify nanomaterials with enormous functionalities are discussed. Towards the end, challenges related to the use of nanobiocatalysts and their possible solution are summarized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call