Abstract

The aerospace industry relies on Ti alloys owing to their strength-to-weight ratio and corrosion resistance. In metastable β-Ti alloys, slow cooling from the β-transus leads to partial transformation into coarse α laths, which is detrimental to the mechanical properties. A refinement and decrease of α laths has been previously achieved in β-Ti alloys with B4C additions. In these materials, the ductility of β-Ti is preserved, and the TiB and TiC particles promote strengthening. However, the mechanism of the β-Ti stabilization remains unclear. Using atom probe tomography, we propose that Mo enrichment in the α-phase limits its growth by reducing the influx of Al from the β-phase. The complex chemical environment near eutectic TiB is enriched in Al and TiO, promoting heterogeneous nucleation of fine α-phase. Increased TiO concentration is observed with the introduction of B4C. A fundamental understanding of the α-refinement mechanism in Ti-alloys is critical for aerospace applications demanding high performance and reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.