Abstract

It is demonstrated that site-directed mutagenesis successfully can be combined with chemical modification creating enzyme derivatives with altered properties. A methionyl residue located in the S1' binding site of carboxypeptidase Y was replaced by a cysteinyl residue and the mutant enzyme was isolated and modified with various alkylating and thioalkylating reagents. Treatment of the mutant carboxypeptidase Y with bulky reagents like phenacyl bromide and benzyl methanethiolsulfonate caused a drastic reduction in the activity towards substrates with bulky leaving groups in the P1' position, i.e. -OBzl, -Val-NH2 and amino acids (except -Gly-OH), while substrates with small groups in that position, i.e. -OMe and -NH2, were hydrolysed with increased rates. The presence of a positive charge, in addition to a bulky group, had a further adverse effect on the activity towards substrates with large leaving groups, whereas the activity towards those with small leaving groups remained unaffected by such a group. The derivatives obtained by modification of the mutant enzyme with benzyl methanethiolsulfonate and methyl methanethiolsulfonate were effective in deamidations of peptide amides and peptide synthesis reactions, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call