Abstract

Chemical modification of the Ar plasma-pretreated Si(100) surface was carried out first by UV-induced graft copolymerization with 4-vinylaniline (4-VAn) and subsequently by oxidative graft copolymerization with aniline. The graft-modified Si surface was characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and electrical resistance measurements. The graft copolymerization of 4-VAn on the Si(100) surface (the VAn-g-Si(100) surface) was affected by the Ar plasma pretreatment time of the Si(100) surface, the 4-VAn monomer concentration, and the UV copolymerization time. XPS results showed that the aniline group of the grafted 4-VAn polymer could be utilised for the subsequent oxidative graft copolymerization with aniline (An). The aniline copolymer-modified VAn-g-Si(100) surface (the An-VAn-g-Si surface) exhibited protonation–deprotonation behaviour similar to that of the aniline homopolymer. The resistance of the graft-modified Si surface was in the order of 10 6 Ω/square. The AFM images revealed that the graft-modified Si surfaces had a uniform morphology. However, the roughness of the Si surface increased after the consecutive grafting processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.