Abstract
A chemical approach to modify the electronic transport of graphene is investigated by detailed transport and Raman spectroscopy measurements on Hall bar shaped samples. The functionalization of graphene with nitrobenzene diazonium ions results in a strong p-doping of the graphene samples and only slightly lower mobilities. Comparing Raman and transport data taken after each functionalization step allowed the conclusion that two preferential reactions take place on the graphene surface. In the beginning a few nitrobenzene molecules are directly attached to the graphene atoms creating defects. Afterwards these act as seeds for a polymer like growth not directly connected to the graphene atoms. The effects of solvents were excluded by thorough control measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.