Abstract

Chemical interaction and changes in local electronic structure of Cr, Fe, Co, Ni and Cu transition metals (TMs) upon formation of an Al8Co17Cr17Cu8Fe17Ni33 compositionally complex alloy (CCA) have been studied by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. It was found that upon CCA formation, occupancy of the Cr, Co and Ni 3d states changes and the maximum of the occupied and empty Ni 3d states density shifts away from Fermi level (Ef) by 0.5 and 0.6 eV, respectively, whereas the Cr 3d empty states maximum shifts towards Ef by 0.3 eV, compared to the corresponding pure metals. The absence of significant charge transfer between the elements was established, pointing to the balancing of the 3d states occupancy change by involvement of delocalized 4s and 4p states into the charge redistribution. Despite the expected formation of strong Al–TMs covalent bonds, the Al role in the transformation of the TMs 3d electronic states is negligible. The work demonstrates a decisive role of Cr in the Ni local electronic structure transformation and suggests formation of directional Ni–Cr bonds with covalent character. These findings can be helpful for tuning deformation properties and phase stability of the CCA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.