Abstract

Binding an electron deficient pincer ligand which strongly dictates planar, mer stereochemistry, to a metal which prefers tetrahedral structure, e.g., d(10) CuCl, is explored for possible intramolecular redox chemistry. Experiment shows that the pincer ligand 2,2'-bis-tetrazinyl pyridine, btzp, forms a complex (btzp)CuCl which is a chloride-bridged polymer in the solid state, hence with 20 valence electrons around copper. DFT calculations show that even the monomer has nonplanar copper with the tetrazinyl nitrogen lone pairs somewhat misdirected away from copper, with long Cu/N bonds, in a singlet ground state; 13.9 kcal/mol less stable is a triplet, whose electronic structure shows one electron from the ground state Cu(I) has been transferred to a pincer π* orbital. Outer sphere electron transfer to (btzp)CuCl yields (btzp)Cu where the added electron has gone into the pincer, to leave a ligand-centered radical, characterized by EPR, chemical reactivity, and X-ray photoelectron spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.