Abstract
Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have focused on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam focused ion beam/scanning electron microscope (FIB/SEM) system for a better understanding of how simulated atmospheric processing can modify the morphology, chemical composition and element distribution within individual particles. A novel approach has been applied for cross-sectioning fly ash particles with the FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing can cause disintegration of aluminosilicate glass, a dominant material in fly ash particles. Fe present in the inner core of fly ash spheres within the aluminosilicate phase is more easily mobilized compared with Fe oxides present as surface aggregates on the exterior of fly ash spheres. Fe dissolution depends strongly on Fe speciation in fly ash particles. The approach for preparation of a cross-sectioned specimen described here opens up new opportunities for particle microanalysis, particularly with respect to inorganic refractive materials like fly ash and mineral dust.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.