Abstract

New rare earth element (REE) data for Archaean basalts and spinifex-textured peridotites (STP) show a range of La/Sm ratios (chondrite-normalized) from 0.36 to 3.5, with the bulk of the data in the range 0.7–1.3. This supports the hypothesis, based on Sr isotope initial ratios, that the Archaean mantle was chemically heterogeneous. We suggest that the bulk mantle source for Archaean basaltic magmas was close to an undepleted earth material. An average chemical composition of the Archaean mantle is estimated using chemical regularities observed in Archaean STP and high-magnesian basalts. TiO 2 and MgO data show an inverse correlation which intersects the MgO axis at about 50% MgO (Fo 92). TiO 2 abundance in the mantle source is measured on this plot by assigning an MgO= 38% for the mantle. Concentrations of other elements are also estimated and these data are then used to obtain a composition for the bulk earth. We suggest an earth model with about 1.35 times ordinary chondrite abundances of refractory lithophile elements and about 0.2 times carbonaceous type 1 chondrite abundances of moderately volatile elements (such as Na, Rb, K, Mn). P shows severe depletion in the model earth relative to carbonaceous chondrites, a feature either due to volatilization or core formation (preferred). Our data support the hypothesis of Ringwood that the source material for the earth is a carbonaceous chondrite-like material. The generation of mid-ocean ridge basalts (MORB) is examined in the light of the model earth composition and Al 2O 3/TiO 2, CaO/TiO 2 ratios. It is suggested that for primitive basalts, these values can be used to predict the residual phases in their source. Comparison of chemical characteristics of inferred sources for 2.7-b.y. Archaean basalts and modern “normal” MORB indicates that the MORB source is severely depleted in highly incompatible elements such as Cs, Ba, Rb, U, Th, K, La and Nb, but has comparable abundances of less incompatible elements such as Ti, Zr, Y, Yb. The cause of the depletion in the MORB source is examined in terms of crust formation and extraction of silica-undersaturated melts. The latter seems to be a more likely explanation, since the degree of enrichment of highly incompatible elements in the crust only accounts for up to 40% of their abundances in the bulk earth and cannot match the depletion pattern in normal MORB. A large volume of material, less depleted than the source for normal MORB must therefore exist in the mantle and can serve as the source for the ocean island basalts and “normal” MORB. Three different mantle evolution models are examined and each suggests that the mantle is stratified with respect to abundances of incompatible trace elements. We suggest that no satisfactory model is available to fully explain the spectrum of geochemical and geophysical data. In particular the Pb and Sr isotope data on oceanic basalts, the depletion patterns of MORB and the balance between lithophile abundances in the crust and mantle, are important geochemical constraints to mantle models. Further modelling of the mantle evolution will be dependent on firmer information on the role of subduction, mantle convection pattern, and basalt production through geologic time together with a better understanding of the nature of Archaean crustal genesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call