Abstract

Invasive social insect populations that have been introduced to a new environment through a limited number of introduction events generally exhibit reduced variability in their chemical signatures (cuticular hydrocarbons) compared to native populations of the same species. The reduced variability in these major recognition cues could be caused by a reduction of genetic diversity due to a genetic bottleneck. This hypothesis was tested in an inbred European population of the invasive hornet Vespa velutina nigrithorax. Our results show that, in spite of the limited amount of genetic diversity present in the European population, the chemical signatures of individuals were highly heterogeneous according to their caste, sex, and colony origin. In queens, some specific saturated and unsaturated hydrocarbons were identified. These results suggest that epigenetic and/or environmental factors could play a role in modifying cuticular hydrocarbon profiles in this introduced hornet population despite the observed reduction of genetic diversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call