Abstract

We report major and trace element concentrations and Nd–Sr–Pb isotopic data of 10 post-collisional volcanic domains in Western Anatolia, a seismically active part of the Alpine–Himalayan belt in the Aegean extensional province. Our objective is to provide geochemical constraints for tectono-magmatic processes shaping the late Cenozoic geodynamic evolution of Western Anatolia. Calc-alkaline volcanic rocks occurring to the north of the Izmir–Ankara–Erzincan suture zone show arc-like trace elements and isotopes and were formed by the melting of the metasomatized Neotethyan mantle-wedge; this process was facilitated by asthenospheric upwelling resulting from slab delamination. Calc-alkaline and alkaline volcanic rocks from within the Izmir–Ankara–Erzincan suture zone also show the imprint of subduction fluids in their major and trace elements, but their isotopic compositions indicate derivation from a metasomatized lithospheric mantle followed by assimilation of ancient crust. Volcanics along the N–S-oriented Kirka–Afyon–Isparta trend were derived from the lithospheric mantle that was metasomatized by fluids from the older subduction of the African plate. Golcuk–Isparta volcanic rocks show an asthenospheric imprint; the latter was a consequence of upwelling following a tear in the subducting African lithosphere. Shoshonitic Kula volcanic rocks show very high trace element concentrations, OIB mantle-like trace elements, and Nd–Sr–Pb isotopic signatures, and were formed by partial melting of the upwelling asthenospheric mantle; this event was synchronous with the Aegean extension and possibly also with slab window formation due to ruptures in the African plate. Inherent in the above chemical geodynamic models are the high ϵNd(0) values (+6.4) of the end-member volcanic rocks, implying the presence of an asthenospheric source beneath Western Anatolia that is responsible for the currently observed high heat flow, low Pn wave velocities, high seismicity, and tectonic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.